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The suitability of the generalized Langevin equation (GLE) for a realistic 
description of the behavior of a system of interacting particles in solution is dis- 
cussed. This study is focused on the GLE for a system of non-Brownian par- 
ticles, i.e., the masses and the sizes of the solute particles are similar to those of 
the bath particles. The random and frictional forces on the atoms of the solute 
due to their collisions with the solvent atoms are characterized from molecular 
dynamics simulations of simple dense liquid mixtures. The required effective 
memory functions, which are dependent on the concentration of solute, are 
obtained by solving a generalized Volterra equation. The validity of the usual 
assumptions on the statistical properties of the random forces is carefully 
analyzed, paying special attention to their Gaussianity. The reliability of 
stochastic simulations based on the GLE is also discussed. 

KEY WORDS: Generalized Langevin equation; random forces; time- 
dependent memory functions; molecular dynamics simulation; time correlation 
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1. I N T R O D U C T I O N  

T h e  L a n g e v i n  ( L E )  a n d  gene ra l i zed  L a n g e v i n  ( G L E )  e q u a t i o n s  are  wide ly  

used  in the s ta t i s t ica l  m e c h a n i c a l  t r e a t m e n t  of  t i m e - d e p e n d e n t  p h e n o m e n a  

in fluids. W h e n  app l i ed  to l iqu id  so lu t ions  they  a l low us to rep lace  the 

d y n a m i c a l  effects of  the  so lven t  on  the  so lu te  by r a n d o m  and  f r ic t ion  forces.  

The  L E  a n d  G L E  m a y  also be used  as subs t i tu tes  for the  classical  N e w t o n  
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equation in computer simulations ~1'2~ at the McMillan Mayer level of 
description, (3) i.e., when only the particles of solute are explicitly con- 
sidered. These stochastic simulation methods--termed Langevin dynamics 
(LD) or generalized Langevin dynamics (GLD), depending on whether the 
LE or GLE is assumed--are very helpful when studying the atomic 
behavior of multicomponent systems, since the need for very expensive 
computational resources is obviated. 

Although the LE was originally introduced from phenomenological 
arguments, its molecular foundations and ranges of validity are carefully 
analyzed in several papers/4/The use of the LE is only justified when we 
deal with Brownian particles whose masses are much larger than those of 
the particles of the bath. If solute and solvent particles have similar sizes 
and masses, memory effects become important and a GLE must be con- 
sidered. A simple derivation of the GLE for a single particle is achieved by 
applying the Mori projection method/5'6) to the components of the velocity. 
This formalism also provides a rigorous statistical mechanical definition of 
the different terms of the GLE. The random force R(t) is the part of the 
total force that is initially orthogonal to the velocity and remains 
uncorrelated to v(0) at all subsequent times, and the memory function M(t) 
is defined from R(t) according to the fluctuation-dissipation theorem. (6~ In 
many cases (e.g., in LD or GLD simulations), more information about the 
random forces is required to characterize them and it is very usual to 
assume, as an additional hypothesis, a Gaussian distribution for R(t). One 
of the aims of this paper is to assess the reliability of this hypothesis. 

The derivation of the GLE for a system of interacting solute particles 
is not so simple. The application of the Mori projection technique to this 
case results in a GLE where the random forces have lost some of their 
characteristic properties and the memory functions are so complex that 
they are not easily modeled and used in computer simulation. (7) Moreover, 
in this derivation the forces among the solute particles would be due to the 
bare interactions, whereas in both theoretical studies and computer simula- 
tions of solutions at the McMillan-Mayer level of description the inter- 
solute forces are ordinarily obtained from solvent averaged potentials W(r). 
(A derivation of the GLE for a pair of solute particles interacting through 
a mean force potential is given elsewhere. (8) Alternatively, one can make 
the assumption that the effect of the solute-solute interactions is accounted 
for by merely adding a force term to the GLE. (9) The ability of GLD 
simulations to reproduce some of the solute properties (e.g., the radial dis- 
tribution functions, the velocity autocorrelation functions, the self-diffusion 
coefficients, the shape of the atomic trajectories, etc.) when suitable 
memory functions and interaction potentials are used is discussed in 
previous works. (lw13) In this paper we analyze the GLE by studying the 
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properties of the random forces on the assumption that the behavior of 
solute particles in realistic systems is described by the GLE. Moreover, we 
extend the test of the GLD simulation method to other solute properties, 
i.e., the acceleration-velocity cross-correlations and the Van Hove correla- 
tion functions. 

In Section 2 we consider the case of single solute particles. We describe 
the procedure used for the determination of R(t) values from an MD 
simulation. The R(t) forces on single stationary solute particles are also 
evaluated and discussed. A method to obtain the concentration-dependent 
memory functions to be used in GLD simulations of interacting particles is 
proposed in Section 3. Section 4 is devoted to the study of statistical 
properties of the R(t) forces for a system of interacting solute particles. In 
Section 5 the reliability of the GLD method is analyzed by comparing the 
results obtained in GLD simulations with the corresponding ones from 
MD simulations. Finally, some conclusions are drawn in Section 6. 

2. R A N D O M  FORCES ON A SINGLE PARTICLE 

The application of the projection-operator formalism (5'6) to each 
component of the velocity vector shows that the motion of a single solute 
particle in a fluid may be described by the GLE 

b ( t ) = -  M ( t - t ' ) v ( t ' ) d t ' + m  1R(t) (1) 

where the memory function M(t) and the stochastic forces R(t) obey the 
statistical relations 

(R(t)) = 0  (2) 

(R(t ) .  v(0)) = 0 (3) 

( R(t) . R(O) ) = mk, TM(t) (4) 

When the explicit values of R(t) are required, a Gaussian distribution is 
ordinarily assumed 

W(R) = (2~z(R2)) -1/2 exp ( -R2 / 2 ( R2 ) )  (5) 

In order to test the reliability of Eq. (5), we have calculated the 
random forces on a single atom (solute) due to its interactions with the 
remaining atoms (solvent) in realistic systems. To do this we performed 
MD simulations of soft-sphere and Lennard-Jones dense fluids (see 
Appendix). The R(t) forces were evaluated at each time step during the 
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MD simulations. If F(t) is the total force on the solute particle, it follows 
from (1) that 

R(t)=F(t )+ M ( t - t ' ) v ( t ' ) d t '  (6) 

The total force at each instant as well as the previous velocities of the 
particles are directly obtained in the ordinary MD simulations without 
difficulty, but the determination of the M(t) functions required the perfor- 
mance of previous MD simulations of the same systems. We obtained the 
velocity autocorrelation functions C(t) from these auxiliary MD simula- 
tions and then M(t) was calculated using the Volterra equation 

C(t) = - M ( t -  t') C(t') dt' (7) 

Equation (7) was solved following the procedure proposed by Berne and 
Harp.(14) 

Following the above procedure, the R(t) forces on a single solute par- 
ticle were evaluated during experiments 1 and 2 (details are given in the 
Appendix). As was expected from the definition of R(t), we verified that 
Eqs. (2)-(4) were well fulfilled. However, some discrepancies were found 
when our results were compared with an exact Gaussian distribution (5) 
with the same variance (R  2> (Fig. 1). The shapes of the curves corre- 
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Fig. 1. Probability distribution of the random forces on a single particle: ( - - )  from MD 
simulation (experiment 2); (- -) Gaussian distribution with the same variance, Eq. (5). 
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sponding to the distribution of frequencies of the R(t) values resemble 
Gaussian functions, but slightly higher maxima are shown by the former. 
The central moments of the R(t) distributions are compared with those 
corresponding to a normal distribution in Table I and we may observe 
noticeable quantitative deviations from R(t) with respect to a Gaussian 
behavior. (/~2 from experiments shows noticeable differences with respect to 
the expected value for a normal distribution f12 = 3). 

We have also tested the Gaussianity of R(t) by calculating the time 
correlation function 

g2(t) = (R2(/') "R2(0) )/(-g4(0) ) (8) 

If R(t) were Gaussian variables, ~ 2 ( t )  would be written as (~4,15) 

e2~(t ) = [1 + 2M~(t)]/3 (9) 

where M,(t) is the normalized memory function 

M,(t) = ( R(t). R(O) )/ ( R2(O) ) (10) 

The discrepancies between e2(t) and e2~(t) are clearly shown in Fig. 2 
and they corroborate the quantitative non-Gaussianity of the R(t) forces. 

We also calculated the R(t) forces that would correspond to a 
memoryless solute particle, i.e., when it is assumed that the solute particle 
obeys the ordinary LE. It is well known that this equation gives accurate 
results when applied to massive solute particles, but introduces important 
mistakes in the solute motions for short time scales when non-Brownian 
particles such as the ones in this work are considered. However, LE is very 
often used for non-Brownian solute particles in works only concerned with 
long-time properties such as the transport coefficients. In experiment 3 the 

Table I. C e n t r a l  Moments of the Distributions of Random 
Forces on a Single Particle 

Dis t r ibu t ion  S imula t ion  N o r m a l  S imula t ion  N o r m a l  

pa ramete r s  a results  b,a d i s t r ibu t ion  c,a results  b,~ distributionC, ~ 

#1 = ( R )  < 1 0  J2 0 < 1 0  -12 0 

/.t2 = ( R 2 )  = 0- 3.90 x l02 3 .90x  102 1.99 x 102 1.99 x 102 
fll = ( R 3 )  =0- 3 < 1 0  -3 0 < 1 0  z 0 

f12 = ( R4 ) = 0-4 3,50 3 4.02 3 

a p~ and  #2 are  expressed in reduced units, 
b Results  from a sample  of 5 x 106 R values. 

Cent ra l  m o m e n t s  for a Gauss i an  d i s t r ibu t ion  with the same var iance  ( R  2)  as the s imula t ion  
results. 

Resul ts  co r r e spond ing  to  exper iment  1. 
" Results  co r re spond ing  to exper iment  2. 
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Fig. 2. 

1.0 

0.8 

0.6 

0.4 

0.2 

x x 

000 0.14 0.28 

t(ru) 

The autocorrelation function e2(t) of the R(t) forces on a single particle: ( - - )  from 
MD simulation (experiment 2); ( --)  assuming the Gaussian approximation. 

R(t) forces were calculated from Eq. (6), but this time assuming that 
M(t) -= 276(0, with 7 = k8 T/mD (D is the particle self-diffusion coefficient). 
The results show that Eq. (2) is fulfilled, but for small values of t the 
correlation between R(t) and v(0) is nonzero. Consistently with the 
assumed memory, the R(t) autocorrelation function is a delta function 
which bears no relation to the real memory function. However, the devia- 
tions with respect to a Gaussian distribution are similar to those observed 
in the other experiments using the GLE. 

On the other hand, we analyzed the possibility of obtaining the 
memory function from the force autocorrelation function on a stationary 
particle. The Brownian motion theory indicates that for an infinitely 
massive particle the random forces on a particle are essentially the same as 
the forces exerted on a fixed one.  (4A6) So,  the friction coefficients for par- 
ticles with masses that are much larger (about a factor 100) than those of 
the solvent are close to those obtained from the forces on stationary par- 
ticles. (1748) In the case of light particles, time-dependent memory functions 
must be considered and a usual assumption C19'2~ is that M(t) might be 
approximated by 

M'(t) = ( R'(t). R'(O) )/mkB T (11) 

where R'(t) is the force of the solvent on the fixed solute particle. 
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M D  results for Na  + and C1 in water (2~'22) showed that M'(t) func- 
tions obtained according to (11) and M(t) functions deduced from the C(t) 
functions of mobile ions are in good agreement and they only show 
noticeable differences at long times when collective effects are important. In 
experiments 4 and 5 (see Appendix) we considered simple dense fluids with 
a fixed particle. In these experiments the random forces R'(t) coincide with 
the total forces of the bath on the stationary particle. Unlike the results for 
ions in water, our M'(t) functions clearly differ from the M(t) ones (Fig. 3). 
M(t) and M'(t) show clear disagreement and they only coincide at t = 0. As 
in the work of Vogelsang and Hoheisel (~8) for Lennard-Jones systems with 
finite massive solute particles, M'(t) lies above M(t) for short times. In our 
case M'(t) remains above M(t) even for long times [notice that an increase 
in the tail of M'(t) as the mass of the solute increases may be observed in 
Fig. 3 of ref. 18]. We did not observe the agreement between M(t) and 
M(t') expected for large mass ratios. (18) The discrepancies between M(t) 
and M'(t) may be attributed to the differences in the relative motion 
between the solute and solvent particles when a mobile solute particle is 
replaced by a fixed one. It seems logical that such differences should be 
more important  for the uncharged particles (as those in our experiments or 
in ref. 18) than for the entities constituted by ions and the water molecules 
of their hydration shells, which are kept together by strong Coulomb 

H(t) 10 r~  

08 

0,2 

00[ 

-02 000 034 0.28 
t(r.u) 

\\ 
L\ 

Fig. 3. Normalized memory functions for a single particle: (--) obtained from C(t) of state 
B using Eq. (7); (..-) from R(t) forces in experiment 2; (- -) from R'(t) forces on a stationary 
particle (experiment 5). 
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forces. Therefore, the results obtained for ions in aqueous solutions (21'22) 
cannot be directly extended to any system and the memories evaluated 
according to Eq. (11) must be used with caution. 

3. EFFECTIVE M E M O R Y  F U N C T I O N S  

As stated in Section 1, the derivation of the GLE for a single particle 
cannot be easily extended to a system of interacting solute particles. 
However, we may simply assume that each solute particle of the system 
moves according to the GLE 

;o fJ(t) = - M j r ( t  - t') v(t ') dt' + m -1R(t) -k m -  1F~fr(t) (12) 

where the systematic force F~.(t) due to the interaction with the other 
solute particles must be obtained from a solvent-averaged mean force 
potential and the random forces R(t)  obey 
relations: 

dR(t)) =0 

dR(t), v(o)) =0 

d R ( t ) .  Ferr(O) ) = 0 

d R ( t ) .  R(O) ) = mkB TM~rr(t) - 2m dr(0) .  Ferf(0)) 6(t) 

the following statistical 

13) 

(14) 

(is) 

(16) 

The GLD simulation method (2'23 2s) is based on the assumption that 
solute particles move according to the GLE (12). R(t)  forces, which fulfill 
the relations (13) (16), are usually generated from a Gaussian distribution. 
The second term on the right-hand side of the fluctuation-dissipation 
theorem (16) is ordinarily neglected. It was shown in previous papers (1~ 
that effective memory functions Meff(t ) and mean force potentials We.(r)  
depending on the solute concentration must be used for the reproduction 
of the structural and dynamical properties of a set of interacting non- 
Brownian particles in solution. Next we describe a rigorous method to 
obtain the Me. ( t )  functions which should be used in GLD simulations in 
order to reproduce the dynamical behavior of the solute particles: 

If we operate on Eq. (12) with ~/)(0)...)/dV(0) 2) and we assume (14), 
we obtain 

d ' ( t )= - M e r r ( t - t ' )  C ( t ' ) d t ' + O ( t )  (17) 

where O(t) is a time-dependent cross-correlation function between the 
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systematic acceleration and the velocity at zero time of the particles which 
obey the GLE 

O(t) = <a(t). v(0)>/(v(0) 2 > (18) 

A straightforward generalization of the algorithm ~j4) commonly employed 
to solve Eq. (7) may be used to invert the generalized Volterra equation 
(17) provided that C(t) and O(t) are known. An analogous procedure was 
used by Posch et al. (23) in their study of the relative dynamics of pairs of 
atoms. 

In order to assess the reliability of this procedure, we performed MD 
simulations of simple liquids and we assumed that some particles of the 
simulated systems play the role of the solute, while the role of the solvent 
is attributed to the remaining particles. We determined the M~ff(t) func- 
tions by an iterative procedure as follows, 

(i) C(t) and g(r) functions for solute particles are determinated 
from MD simulations of complete solute + solvent systems. 

(ii) W~r(r) is calculated from g(r) according to the method 
proposed in ref. 10. An initial M,fr(t) function is chosen. 

(iii) O(t) is calculated using Eq. (18) during a GLD simulation with 
M~ff(t) and Werf(r). 

(iv) A new Meff(t ) is obtained by solving (17) with C(t) of the com- 
plete system and O(t) obtained in the preceding step. If the new M~fr(t) dif- 
fers from the previous one, we go back to (iii), assuming the new Meff(t). 

We applied this procedure to the systems described in experiments 1 
and 2. The memories used to start the iterative procedure were obtained 
according to the semiempirical rule (m 

MelT(/) = (1 -- X) M M D ( t )  (19) 

where x is the solute molar fraction and MMD(t) is the memory function 
determined from the C(t) which resulted from the MD simulation of the 
complete system. The integration algorithm used in GLD simulations to 
solve (12) is described in ref. 24. This method is based on the one proposed 
by Vesely ~25) and it requires the knowledge of the coefficients of a finite 
Mori continued-fraction expansion of the Laplace transform of Mefr(t). The 
number of Mori coefficients to be used depends on the characteristics of 
Meff(t), ~11) but it is not usually possible to fit accurately the Meff(t) Laplace 
transforms to a manageable number of Mori terms and truncation effects 
may result in some mistakes. 

Although the determination of Morf(t) would require, in general, an 
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iterative procedure, we verified that, at least for the systems considered in 
this paper, the convergence was reached after the first step. This result 
corroborates the suitability of the semiempirical rule (19) used for the 
determination of the initial Meff(t ) function. 

The C(t) functions corresponding to a set of interacting particles 
obtained from GLD simulations with Meff(t) are very close to the input 
C(t) functions obtained from the MD simulations of the complete systems. 
This result not only confirms the ability of the procedure used for the 
determination of Meff(t ), but it also suggests that although Eq. (12) is 
based on an ansatz, the dynamical properties of solute particles may be 
well reproduced by GLD simulations if the correct M~ff(t) functions are 
used. In Fig. 4 we compare the C(t) functions corresponding to the MD 
and GLD simulations of experiment 6, which is described in the Appendix. 
The agreement is very good for short times. The slight discrepancies 
observed for longer times should not be attributed to defects in the M~ff(t) 
functions, but to the difficulties in the numerical treatment, mainly due to 
defects in the fitting of the Mori coefficients. 

The behavior of the C(t) functions resulting from GLD simulations is 
affected by two factors, i.e., the memory function Melt(t) introduced as a 
datum in order to model the individual motion of particles and the inter- 
particle interactions whose effects are accounted for by the O(t) function. If 
Eq. (17) is integrated, we obtain 

C(t )  = C(O) - CM( t  ) ~- Co(t ) (20) 

C(t) 10 

0.8 

0.6 

0.t~ 

�9 o 

Co(tl , , , , ~ , , , ,  
-0.2 

0.00 0,35 0.70 
t(r.u ) 

Fig. 4. Veloci ty autocorre]at ion function C(t) f rom ( ) M D  and (- -) f rom GLD.  (-- - )  Time 
integral of the force-velocity cross-correlation function Co(t ). Results f rom experiment 6. 
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where 

C(0) = 1 (21) 

t * t  '~ 

CM(t) = "oo~ j M(t"-  t') C(t')dt' dt" (22) 
0 

f2 c 0 ( 0  = o(t") dC' (23) 

We verified that Co(t) functions had simple shapes and that they quickly 
reached an almost constant value (see Fig. 4). Therefore, the influence of 
O(t) functions is only significant at short times and their contribution to the 
M~ff(t) functions is merely a small correction. Our results suggest that sim- 
ple models for O(t) are good enough for the determination of acceptable 
Merf(t ) functions to be used in GLD computer simulations. 

4. R A N D O M  FORCES ON I N T E R A C T I N G  PARTICLES 

In the preceding section we confirmed that C(t) functions of solute 
particles can be acceptably reproduced by computer simulations based on 
the numerical integration of the GLE. In this section we analyze the 
properties of the random forces which would replace the dynamical effects 
of the solvent on the solute if the motions of the solute particles are 
described according to the GLE. 

We proceed in a way similar to that described in Section 2 for single 
particles. In this case the expression for the evaluation of the R(t) forces on 
the solute particles is derived from (12) and it reads 

R(t)=F(t)-F~rr(t)+m Mefr(t-t')v(t')dt' (24) 

F(t) is the total force on the tagged solute particle and Fefr(t ) is the force 
due to its interaction with the other solute particles. Ferf(t) forces were 
calculated from pair additive mean force potentials Wcff(r) by following the 
procedure proposed in an earlier work (m) and used in Section 3. The 
method used to calculate Mc~(t) was described in Section 3. 

The results of experiments 7 and 8 (see Appendix for details) show 
that the R(t) forces on a set of interacting particles evaluated according to 
(24) obey the statistical relations (13)-(16). The agreement between the 
R(t) time autocorrelation functions and the corresponding meff(t ) func- 
tions (Fig. 5) confirms the reliability of the method proposed in Section 3 
for the determination of Merr(t) functions. We observed that 0(0) and 
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Fig. 5. ( - - )  Memory function (experiment 8) from C(t) of state B; (- -) effective memory func- 
tion determined according to the method of Section 3; ( . . . )  from random forces on a set of 
interacting particles. 

therefore the second term on the right-hand side of the fluctuation-dissipa- 
tion theorem (16) was negligible. This last result is consistent with that 
obtained from Brownian dynamics simulations of n-butane. (26) Moreover, 
this should be true for all those systems whose particles have realistic 
motions, since C(0) = 0 is a well-known property of the ordinary C(t) func- 
tions for real systems and then it follows from (17) that 0 (0)=  0. We also 
analyzed the distribution of frequencies, the central moments, and the e2(t) 
time correlation functions of the R(t) values in experiments 7 and 8. We 
verified that their deviations from a Gaussian distribution are similar to 
those observed for single solute particles in Section 2. 

5. T E S T  O F  T H E  G L D  S I M U L A T I O N  M E T H O D  

The results of the preceding section confirm that the microscopic 
behavior of a subset of interacting atoms may be consistently treated using 
the GLE (12) with We~(r) and Me~(t ). Moreover, the solute g(r) and C(t) 
correlation functions obtained from GLD simulations are in quite good 
agreement with those from MD simulations of the complete systems (see 
refs. 10 and 11 and Section 3). The self-diffusion coefficients D, which may 
be expressed as a time integral of C(t), are also well reproduced by GLD 
simulations. Nevertheless, the simple comparison of g(r) and C(t) cannot 
be considered as a definitive test of the GLD method because these func- 
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tions were precisely the ones we used to determinate Were(r) and Merf(t ). 
For this reason, other properties should be used for testing the GLD 
simulation method. 

Previous papers proved the ability of GLD simulations for reproduc- 
ing both the time-dependent probability distributions of the changes of 
direction of the atomic velocities (12) and the fractal behavior of the shape 
of the atomic trajectories. (13) In this work the comparison between the MD 
and GLD results is extended to the van Hove space- and time-dependent 
G(r, t) function (27) and to the O(t) cross-correlation function (18). To do 
that we performed MD and GLD simulations of a liquid mixture of soft 
spheres. Details of these simulations are given in the Appendix (experi- 
ment 9). 

The van Hove correlation function G(r, l) (27) is the time-dependent 
generalization of the radial distribution function g(r). This function is 
naturally separated into the self [G,(r, t)]  and distinct [Ga(r, t)] parts. We 
calculated these functions in experiment 9, and the results, which are 
represented in Figs. 6 and 7, show a good accordance between the time 
evolutions of the spatial correlations obtained in MD and GLD simula- 
tions. 

The O(t) function (18) defined in Section 3 was also determined in 
experiment 9. As may be observed in Fig. 8, the agreement between the 
results is rather good, but we observe slight discrepancies around t = 0.25. 
Similar disagreements are shown by the C(t) and they were also observed 
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in experiment 6 (Fig. 4). These mistakes in GLD results are due to defects 
in the memory function actually used in the GLD simulation, which was 
obtained by fitting the Men(t) to a Mori continued-fraction expansion of 
three terms. In order to improve the GLD simulation method, we are 
developing an integration algorithm which will allow us to use M~n(t) 
without the need for fitting them to a Mori expansion. 

6. C O N C L U D I N G  R E M A R K S  

MD simulations of realistic dense liquids have been used to charac- 
terize the R(t) forces which appear when the GLD is used for the descrip- 
tion of the atomic motions. Our results show that the distribution of 
frequencies of the R(t) values resembles the ordinarily assumed Gaussian 
distribution, but some discrepancies appear when quantitative analyses are 
performed. It should be noticed that similar non-Gaussian features, which 
are associated with the nonlinearities of the microscopic interactions, were 
already observed from the analysis of the atomic velocities. ~15'28~ 

Although the GLE for a system of interacting non-Brownian particles 
has not been theoretically demonstrated, the statistical properties of the 
R(t) forces generated from MD simulations using the GLE are the ones 
ordinarily required for the random forces (13)-(15). Moreover, computer 
simulations based on the GLE and assuming a Gaussian distribution 
of R(t) permit quite good reproductions of the analyzed structural 
and dynamical properties of the solute [g(r), C(t), D, O(t), G(r, t),...]. 
Nevertheless, reliable GLD simulations require the use of suitable Werf(r ) 
and M~ff(t) which are dependent on the solute concentration. As for 
Wen(r), ~1~ the method that we propose for obtaining Mr requires MD 
simulations of the complete systems. In the case of complex systems, which 
are the most useful applications of the GLD method, these MD simula- 
tions may demand too expensive computations and approximate W~n(r) 
and Men(t) models should be used. For this reason it turns out to be very 
practical to consider very simple systems, such as those in this work, for 
testing the GLD simulation method. 

A P P E N D I X  

The results shown in this paper were obtained by performing several 
computer experiments using the MD method with the Beeman algo- 
rithm (29) (in experiments 6 and 9 the GLD method was also used): 

(i) State A corresponds to liquid Ar at T*=0.965 and p*=0.931. 

822/60/3-4-t5 
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The atoms interacted through a soft-sphere potential, i.e., a Lennard-Jones 
potential truncated at 21/6. A time step of r = 4.637 x 10 3 was used. 

(ii) State B corresponds to liquid Kr at T* =0.80 and p * =  0.812. 
The interaction potential was a Lennard-Jones with a cutoff at 2.4. In this 
case the time step was v = 3.543 x 10 -3. 

(iii) State C corresponds to a liquid binary mixture of soft spheres at 
p * =  0.642 ant T * =  0.481. The solvent particles (75%) were Ar atoms and 
the mass and potential parameters of the solute particles (25%) were 
m=4mAr and a =  1.250"Ar, e=2ear ,  respectively (mAr, O'Ar , and '~Ar are 
the usual parameters for Ar). For  the unlike interactions, the 
Lorentz-Berthelot rules were used. The time step was 2.623 x 10 -3. In this 
case, the reduced units are expressed in terms of e, a, and m. 

In experiments 1 (state A) and 2 (state B) the system was made up of 
100 atoms and during the MD simulations we used Eq. (6) for the calcula- 
tion of R(t) forces on each atom. We performed simulations of 6.500 time 
steps. Previous MD simulations of the same systems were performed for 
the determination of the M(t) functions to be used in (6). 

Experiment 3 was as experiment 2, but on the assumption that the 
solute particle obeyed the ordinary Langevin equation for Brownian par- 
ticles, i.e., replacing in (6) the friction term by 7v. The friction coefficient 
was calculated from the diffusion coefficient D of state B following the 
Einstein expression 7 = k B T/mD. 

Experiments 4 and 5 were analogous to experiments 1 and 2, respec- 
tively, except that we kept one particle stationary. In experiments 4 and 5 
we were only interested in the random forces on the stationary particle. So, 
longer simulations were required to achieve adequate average results. The 
total number of time steps in each experiment was 150.000. 

In experiment 6 (state A) we considered 1025 particles and we 
assigned the role of solute to 125 of them and the role of solvent to the 
others. The C(t) and g(r) functions obtained from a previous MD simula- 
tion of the whole system were used for the determination of Me~(t) and 
We~(r). A GLD simulation of the 125 solute particles was performed in 
order to determine O(t) and to check the reliability of the G LD  simulation 
method using Meff(t) functions (see Section 3). The G LD  simulation was 
performed according to the algorithm described in ref. 24. The Laplace 
transform of the Mo~(t) function was fitted to a Mori continued-fraction 
expansion of three terms/H) 

Experiments 7 and 8 were similar to experiments 1 and 2, respectively, 
but we assumed that 25 tagged particles played the role of the solute. 
Equation (24) was used for the calculation of R(t) forces on these particles. 
Melt(t) and W~(t) were deduced from the C(t) and g(r) functions resulting 
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f rom a previous  M D  s imula t ion  of the same system in accordance  with the 
m e t h o d  p r o p o s e d  in Section 3 and in ref. 10, respectively.  Fell(t) was 
ca lcula ted  assuming tha t  Weff(r) potent ia ls  were t runca ted  at 2.5. 

Exper iment  9 consis ted of two s imula t ions  of a system in state C. The 
system was made  up of 500 particles.  W e  per formed  an M D  s imula t ion  of 
the comple te  system and a G L D  s imula t ion  of the 125 solute particles.  The 
Meff( t)  and W~fr(r) required for the G L D  s imula t ion  were ca lcula ted  from 
the solute C(t)  and  g(r) ob ta ined  in the M D  s imula t ion  accord ing  to 
Sect ion 3 and  ref. 10, respectively. The Laplace  t ransform of Me~(t )  was 
fitted to a Mor i  cont inued- f rac t ion  expans ion  of three terms. Wolf(r) was 
t runca ted  at 2.5 and  the a lgor i thm descr ibed in ref. 24 was used. The 
evolu t ion  of the system was s tudied over  160.000 t ime steps in the M D  
s imula t ion  and  over  180.000 t ime steps in the G L D  simulat ion.  We po in t  
out  tha t  for the ca lcula t ion  of the O(t) in the M D  s imula t ion  we used the 
accelera t ion  a(t)  der ived from the W~n-(r) potent ial .  

A C K N O W L E D G M E N T S  

We acknowledge  the f inancial  suppor t  of D G I C Y T ,  Projec t  PS 87- 
0026-C02. 

R E F E R E N C E S  

1. P. Turq, F. Lantelme, and H. L. Friedman, J. Chem. Phys. 66:3039 (1977). 
2. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, 

Oxford, 1987), Chapter 9. 
3. H. L. Friedman, A Course in Statistical Mechanics (Prentice Hall, New Jersey, 1985), 

Chapter 4. 
4. J. M. Deutch and I. Oppenheim, J. Chem. Phys. 54:3547 (1971); Faraday Disc. Chem. Soc. 

83:1 (1987). 
5. H. Mori, Prog. Theor. Phys. 33:423 (1965); 34:399 (1965). 
6. B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976), 

Chapter 11. 
7. G. Ciccotti and J. P. Ryckaert, J. Stat. Phys. 26:73 (1981). 
8. F. J. Vesely and H. A. Posch, Mol. Phys. 64:97 (1988). 
9. G. Bossis, B. Quentrec, and J. P. Boon, Mol. Phys. 45:191 (1982). 

10. E. Gufirdia, J. L. G6mez-Est6vez, and J. A. Padr6, J. Chem. Phys. 86:6438 (1987). 
11. J. A. Padr6, E. Gufirdia, and G. Ses6, Mol. Phys. 63:355 (1988). 
12. M. Canales and J. A. Padr6, MoL Simul. 1:403 (1988). 
13. J. A. Padr6 and M. Canales, Mol. Phys. 68:423 (1989). 
14. B. J. Berne and G. D. Harp, Adv. Chem. Phys. 17:63 (1970). 
15. U. Balucani, V. Tognetti, R. Vallauri, P. Grigolini, and P. Matin, Z. Phys. B. 49:181 

(1982). 
16. R. Zwanzig, Annu. Rev. Phys. Chem. 16:67 (1965). 
17. R. Vogelsang and C. Hoheisel, J. Stat. Phys. 47:193 (1987). 



518 Ses~ et  aL 

18, R. Vogelsang and C. Hoheisel, J. Stat. Phys. 54:315 (1989). 
19. P. G. Wolynes, Annu. Rev. Phys. Chem. 31:345 (1980). 
20. J. P. Bergsma, J. R. Reimers, K. R. Wilson, and J.T. Hynes, J. Chem. Phys. 85:5625 

(1986). 
21. M. A. Wilson, A. Pohorille, and L. R. Pratt, J. Chem. Phys. 83:5382 (1985). 
22. M. Berkowitz and W. Wan, J. Chem. Phys. 86:376 (1987). 
23. H. A. Posch, U~ Balucani, and R. Vallauri, Physica 123A:516 (1984). 
24. E. Gufirdia and J. A. Padr6, J. Chem. Phys. 83:1917 (1985). 
25. F. J. Vesely, Mol. Phys. 53:505 (1984). 
26. W. F. van Gunsteren and H. J. C. Berendsen, Mol. Phys. 47:721 (1982). 
27. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, London, 

1986), Chapter 7. 
28. M. Ferrario, P. Grigolini, A. Tani, R. Vallauri, and B. Zambon, Adv. Chem. Phys. 62:389 

(1985); D. Bertolini, M. Casserattari, P. Grigolini, G. Salvetti, and A. Tani, J. Mol. Liquids 
41:251 (1989). 

29. D. Beeman, J. Comput. Phys. 20:130 (1976). 


